

- This Slideshow was developed to accompany the textbook
- Larson Algebra 2
- By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
- 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

6.1 Evaluate n th Roots and Us	e Rational Exponents
• Root	
• If $a^2 = b$, then a is a square (2^{nd}) roo	t of b
• If a ⁿ = b, then a is the n th root of b	-93

• Parts of a radical

6.1 Evaluate nth Roots and Use Rational Exponents	
• Rational Exponents	
• $b^{1/n} = \sqrt[n]{b}$	
$\bullet b^{m/n} = \sqrt[n]{b^m} = \left(\sqrt[n]{b}\right)^m$	
• Evaluate	
• 36 ¹ / ₂	-
\	
\ \	
	1
/ E	
6.1 Evaluate n th Roots and Use Rational Exponents	
$\cdot \left(\frac{1}{8}\right)^{-\frac{1}{3}}$	
(8)	
4	
• 27 4/3	
\ (_
6.1 Evaluate nth Roots and Use Rational Exponents	
• To find the roots by hand	
Find the prime factorization of the radicand	
Group the prime factors into groups of the same factor. Each	
group should have as many factors as the index.	
• For each complete group, you can move that factor out of the	
radical once (the group becomes one number)	
• If the index is even and the radicand is negative, the roots are not real	

6.1 Evaluate nth Roots and Use Rational Exponents	
$\bullet \sqrt[3]{64} \qquad \bullet \sqrt{36x^4}$	
6.1 Evaluate nth Roots and Use Rational Exponents	-
• Find roots with a calculator	
• The \sqrt{x} or $\sqrt{}$ key is for square roots (either radicand then key or key then radicand depending on calculator)	
• The $\sqrt[x]{y}$ or $\sqrt[x]{x}$ or $\sqrt[x]{x}$ is for any root (index \Rightarrow key \Rightarrow radicand OR	-
radicand → key → index)	
• Try it with $\sqrt[4]{100}$	
\ (
	-
6.2 Apply Properties of Rational Exponents	
• Using Properties of Rational Exponents	
$ x^m \cdot x^n = x^{m+n} $	
$\bullet (xy)^m = x^m y^m$	
$ \begin{array}{ccc} \bullet (x^m)^n = x^{mn} \\ x^m & \cdots \end{array} $	
$\frac{x^m}{x^n} = x^{m-n}$	
$\bullet x^{-m} = \frac{1}{x^m}$	

6.2 Apply Prope	rties of Rational Exponents
• 6 ^{1/2} · 6 ^{1/3}	• $(27^{1/3} \cdot 6^{1/4})^2$

6	.2 Apply Pr	operties of Rational Ex	ponents
	$(4^3 \cdot w^3)^{-1/3}$	$ \begin{array}{c} $	

- Using Properties of Radicals
- Product Property →

$$\bullet \sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

• Quotient Property \rightarrow

$$\bullet \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

6.2 Apply Properties of Rational Exponents	
6.2 Apply Properties of Rational Exponents	
$\frac{3}{\sqrt[3]{4x}}$	
6.2 Apply Properties of Rational Exponents	
Writing Radicals in Simplest Form	
Remove any perfect roots Rationalize denominators	
• 4/64	
• (16g ⁴ h ²) ^{1/2}	
\	
6.2 Apply Properties of Rational Exponents	-
$\cdot \sqrt[4]{\frac{7}{8}}$	

6.2 Apply Properties of Rational Exponents	
6.2 Applig Troperties of National Exponents	
• $\sqrt[5]{\frac{x^5}{y^8}}$ • $\frac{18rs^{\frac{2}{3}}}{6r^{\frac{1}{4}}t^{-3}}$	
ç. v	
6.2 Apply Properties of Rational Exponents	
Adding and Subtracting Roots and RadicalsSimplify the radicals	
Combine like terms	
• 5(43/4) - 3(43/4)	
6.2 Apply Properties of Rational Exponents	
• ³ √81 – ³ √3	
VOI VO	
	-
• $2\sqrt[4]{6x^5} + x\sqrt[4]{6x}$	
	r
\ [

6.3	Perform	Function (Operations and	Composition
0./				(Oniposition

- Sometimes for your problems you need to repeat several calculations over and over again (think science class).
- It would be quicker to combine all the equations that you are using into one equation first, so that you only have to do one equation each time instead of many.

- 6.3 Perform Function Operations and Composition
- Ways to combine functions

• Addition: (f + g)(x) = f(x) + g(x)

(f-g)(x) = f(x) - g(x)• Subtraction:

• Multiplication: $(f \cdot g)(x) = f(x) \cdot g(x)$

(f/g)(x) = f(x) / g(x)• Division:

- 6.3 Perform Function Operations and Composition Given $f(x) = 2x^{1/2} 1$ and $g(x) = x^{1/2}$ find
- (f + g)(x)
- (f g)(x)
- $(f \cdot g)(x)$
- (f / g)(x)

 6.3 Perform Function Operations and Composition Composition Put one function into the other. (Like substitution) Written f(g(x)) Said "f of g of x" Means that the output (range) of g is the input (domain) of f. Work from the inside out. Do g(x) first then f(x). g(x) gets substituted into f(x) 	
6.3 Perform Function Operations and Composition • Find f(g(x)) when f(x) = 2x + 3 and g(x) = x ² • Find g(g(x))	
6.4 Use Inverse Functions • Sometimes you want to do the opposite operation that a given function or equation gives you. • To do the opposite, or undo, the operation you need the inverse function.	

		,			_	
6	4	1	50	nverse	lunct	tions

- Properties of Inverses
- ${\color{blue} \bullet}$ x and y values are switched
- graph is reflected over the line y = x

- \bullet You can use the Horizontal Line test to determine if the inverse of a function is also a function.
- If a horizontal line can touch a graph more than once, then the inverse is not a function.

6.4 Use Inverse Functions

- Definition of inverses
- Two functions are inverses if and only if
- f(g(x)) = x and g(f(x)) = x
- Remember a function is when one x value only goes to one y value (lines are functions, quadratics are functions, square roots are not functions)

6.4 (se	nverse	Functions
-------	----	--------	-----------

• Verify that f(x) = 6 - 2x and $g(x) = \frac{6-x}{2}$ are inverses.

6.4 Use Inverse Functions

- Finding inverses
- Inverses switch the x and y coordinates
- If the function is written as ordered pairs then just switch the x and y's
- Example: find the inverse of $f(x) = \{(2, 3), (4, 5)\}$

6.4 Use Inverse Functions

- Finding inverses
- If the function is written as an expression
 - $\bullet f(x) = x^4 + 2, x \le 0$
- Rewrite f(x) as y
- $y = x^4 + 2, x \le 0$
- (if problem is y=__, skip 1st and last step)
- $x = y^4 + 2, y \le 0$
- Switch the x and y • Solve for y

- $x 2 = y^4, y \le 0$ $y = \pm \sqrt[4]{x 2}, y \le 0$
- Rewrite y as f-1(x)
- $f^{-1}(x) = -\sqrt[4]{x-2}$

6.5 Graph Square Root and Cube Root Functions

6.5 Graph Square Root and Cube Root Functions

• How graphs transform

•
$$y = a\sqrt{x - h} + k$$

•
$$y = a\sqrt[3]{x - h} + k$$

Graphing shortcut

- 1. Start with the points from $y = \sqrt{x}$ or $y = \sqrt[3]{x}$
- 2. Multiply the y-coordinates by a
- 3. Move over h to the right and up k

6.5 Graph Square Root and Cube Root Functions

• How did the following graphs transform?

•
$$y = \sqrt{x-3} + 4$$

 $\bullet y = \sqrt[3]{x+3} - 5$

• Graph

$$\bullet y = -2\sqrt[3]{x-3} + 1$$

6.5 Graph Square Root and Cube Root Functions • Find the domain and range • $y = 2\sqrt{x+4} - 1$ • $y = 3\sqrt[3]{x-5} + 6$	
 6.6 Solve Radical Equations Radical Equation Equation containing a radical Steps Isolate the radical Raise both sides to whatever the index is (or the reciprocal of the exponent) Solve Check your answers!!! 	
6.6 Solve Radical Equations •5 - $\sqrt[4]{x} = 0$ •3 $x^{\frac{4}{3}} = 243$	

6.6 Solve Radical Equati	ons		
$\bullet\sqrt{2x+8}-4=6$			
6.6 Solve Radical Equati	ons		
• $x + 2 = \sqrt{2x + 28}$	Olia		
• Check!			